ERBB RECEPTORS AND CANCER: THE COMPLEXITY OF TARGETED INHIBITORS

Nancy E. Hynes* and Heidi A. Lane‡

Abstract | ERBB receptor tyrosine kinases have important roles in human cancer. In particular, the expression or activation of epidermal growth factor receptor and ERBB2 are altered in many epithelial tumours, and clinical studies indicate that they have important roles in tumour aetiology and progression. Accordingly, these receptors have been intensely studied to understand their importance in cancer biology and as therapeutic targets, and many ERBB inhibitors are now used in the clinic. We will discuss the significance of these receptors as clinical targets, in particular the molecular mechanisms underlying response.

Subclass I of the receptor tyrosine kinase (RTK) superfamily consists of the ERBB or epidermal growth factor (EGF) receptors and comprises four members: EGFR/ERBB1, ERBB2, ERBB3 and ERBB4. All members have an extracellular ligand-binding region, a single membrane-spanning region and a cytoplasmic tyrosine-kinase-containing domain. The ERBB receptors are expressed in various tissues of epithelial, mesenchymal and neuronal origin. Under normal physiological conditions, activation of the ERBB receptors is controlled by the spatial and temporal expression of their ligands, which are members of the EGF family of growth factors (reviewed in REFs 1,2) (FIG. 1). Ligand binding to ERBB receptors induces the formation of receptor homo- and heterodimers and activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine residues within the cytoplasmic tail. These phosphorylated residues serve as docking sites for a range of proteins, the recruitment of which leads to the activation of intracellular signalling pathways (reviewed in REFs 2–4).

The importance of ERBB receptors during development and in normal adult physiology is evident from analyses of genetically modified mice (BOX 1). Furthermore, EGFR and ERBB2 have been implicated in the development of many human cancers. Patients with cancer whose tumours have alterations in ERBB receptors tend to have a more aggressive disease, and one that is associated with factors that predict a poor clinical outcome, so ERBB receptors have been intensely pursued as therapeutic targets (reviewed in REF 5). There are two major classes of anti-ERBB therapeutics: ectodomain-binding antibodies and small-molecule tyrosine-kinase inhibitors (TKIs) that compete with ATP in the tyrosine-kinase domain (BOX 2). Many of these therapies are either in clinical use or in advanced clinical development and these will be a main topic of this review.

We will outline our understanding of how ERBB receptors contribute to cancer and, in particular, how targeted therapeutics affect the transformed phenotype. Using data gleaned from preclinical models, and where possible from the clinic, we will discuss potential molecular mechanisms that underlie a successful response to the blockade of ERBB signalling. We will also discuss mechanisms that allow tumour cells to escape from anti-ERBB therapies and suggest alternative strategies that might lead to more effective treatment in the clinic.

The ERBB receptors and their ligands

With respect to ERBB-receptor binding, the EGF family of ligands can be divided into three groups: the first includes EGF, transforming growth factor-α and
REVIEWS

G-PROTEIN-COUPLED RECEPTORS

A large family of receptors that span the membrane seven times and couple to G proteins, which are composed of α-, β- and γ-subunits. The α-subunit contains the nucleotide (GTP or GDP) binding site, and the β- and γ-subunits behave as a single entity.

Summary

- The family of ERBB or epidermal growth factor (EGF) receptors includes four members: EGFR/ERBB1, ERBB2, ERBB3 and ERBB4. EGFR and ERBB2 are involved in development of numerous types of human cancer and they have been intensely pursued as therapeutic targets.

- Two important types of ERBB inhibitor are in clinical use: humanized antibodies directed against the extracellular domain of EGFR or ERBB2, and small-molecule tyrosine-kinase inhibitors (TKIs) that compete with ATP in the tyrosine-kinase domain of the receptor.

- In preclinical models, treatment of tumour cells with ERBB-directed TKIs and antibodies rapidly downregulates phosphatidylinositol-3-kinase–AKT, mitogen-activated protein kinase, SRC, and signal transducer and activator of transcription (STAT) signalling, and blocks the proliferation of tumour cells. In the clinic, skin biopsies (surrogate tissue), and to a limited extent tumours, have been analysed for the molecular consequences of treatment with ERBB inhibitors.

- ERBB-directed therapeutics have demonstrated clinical efficacy; however, the antitumour effects are often not as strong as predicted from preclinical studies. There are likely to be various reasons why this is so, an important one being that other tumour-cell alterations influence the tumour response to ERBB-targeted inhibitors. Therefore, rational drug-combination strategies have great potential to combat the complexity of tumour biology.

ERBB receptors and cancer

The ERBB receptors are implicated in the development of many types of cancer, and EGFR was the first tyrosine-kinase receptor to be linked directly to human tumours (for a timeline on EGFR and cancer see Ref. 12). ERBB receptors undergo various types of alteration in human tumours.

Gene amplification leading to EGFR overexpression is often found in human cancers13,14. Furthermore, in many tumours EGF-related growth factors are produced either by the tumour cells themselves or are available from surrounding stromal cells, leading to constitutive EGFR activation (Fig. 2) (reviewed in Ref. 15). In gliomas, EGFR amplification is often accompanied by structural rearrangements that cause in-frame deletions in the extracellular domain of the receptor, the most frequent being the EGFRvIII variant15. Carcinomas of the breast, lung and ovaries have also been reported to express this variant16, although these data await further confirmation. Somatic mutations in the tyrosine-kinase domain of EGFR were recently identified in non-small-cell lung cancers (NSCLCs) in a subgroup of patients that showed clinical responses to treatment with the TKIs gefitinib17,18 and erlotinib19. The functional properties of these mutant receptors will be discussed below.

Amplification of ERBB2 leading to overexpression of the receptor, originally detected in a subset of breast tumours20, occurs in other human cancers such as ovarian, gastric and salivary cancers (reviewed in Refs 5,22). Intriguingly, mutations in the kinase domain of ERBB2 have been identified in a small number of NSCLCs23. The impact of these mutations on ERBB2 activity remains to be explored.

Structural studies on ERBB receptors

Publications describing the crystal structure of the EGFR, ERBB2 and ERBB3 ectodomains (reviewed in Ref. 24) have led to new insights into some intriguing questions concerning the process of ligand-induced receptor dimerization and biological activity of ERBB2-targeted antibodies. The extracellular region of each ERBB receptor consists of four domains (I–IV; Fig. 3). Determination of the structure of ligand-bound EGFR has confirmed earlier studies (reviewed in Ref. 24) that show the importance of domains I and III in peptide binding. Moreover, these studies also revealed that there is a direct receptor–receptor interaction promoted by the domain II dimerization arm; the ligands are not involved in the receptor–receptor interaction25,26. In unliganded ERBB3 (Ref. 27) or ligand-bound inactive EGFR28 the receptors assume the so-called tethered structure, in which the domain II dimerization interface is blocked by intramolecular interactions between domains II–IV. The EGFRvIII variant is missing exons 1–7 (Ref. 16) and, consequently, the domain II dimerization arm, and cannot assume the closed tethered structure, perhaps explaining its constitutive activation29.

The structure of ERBB2’s extracellular region is radically different from the others. ERBB2 has a fixed conformation that resembles the ligand-activated state: the domain II–IV interaction is absent and the dimerization loop in domain II is exposed30,31. This
ERBB receptors, ligands, dimers and downstream signalling pathways.

a | Members of the epidermal growth factor (EGF) family of growth factors are ligands for the ERBB receptors. Ligand binding to ERBB receptors induces the formation of receptor homo- and heterodimers and the activation of the intrinsic kinase domain, resulting in phosphorylation on specific tyrosine residues within the cytoplasmic tail. These phosphorylated residues serve as docking sites for a range of proteins, the recruitment of which leads to the activation of intracellular signalling pathways. None of the ligands bind ERBB3, but ERBB3 is the preferred dimerization partner for all the other ERBB receptors. ERBB3 has impaired kinase activity and only acquires signalling potential when it is dimerized with another ERBB receptor, such as ERBB2. Overexpression of ERBB2 in tumours leads to constitutive activation of ERBB2, presumably because of increased receptor concentrations at the plasma membrane. Many of these tumours contain phosphorylated ERBB3, which couples ERBB2 to the phosphatidylinositol 3-kinase (PI3K)–AKT pathway. Schematic representation of the main autophosphorylation sites in EGF receptor (EGFR), ERBB2 and ERBB3 and of the signalling molecules associated with these sites. Despite extensive overlap in the molecules recruited to the active receptors, there is some preferential modulation of signalling pathways. Tumour cells that express EGFR with kinase-domain mutations in the molecules recruited to the active receptors, there is some preferential modulation of signalling pathways. Tumour cells that express EGFR with kinase-domain mutations in the molecules recruited to the active receptors, there is some preferential modulation of signalling pathways.

b | EGFR

ERBB2

ERBB3

Figure 1 | ERBB receptors, ligands, dimers and downstream signalling pathways.

ERBB2 is the preferred partner for the other activated ERBBs, as it is permanently poised for interaction with another ligand-bound receptor. Furthermore, this structure explains why no soluble EGF-related ligand has been found. It predicts that ERBB2 possesses a unique subdomain I–III interaction that makes ligand binding impossible because the site is buried and not accessible for interaction.

ERBB-receptor transactivation in cancer

The EGF family of growth factors are produced as transmembrane precursors that can be cleaved by cell-surface proteases (reviewed in Refs 32,33), a step that leads to the release of soluble ligands. This cleavage, referred to as ectodomain shedding, is an important step in the control of ligand availability and receptor activation (reviewed in Ref 32). ERBB receptors are often constitutively stimulated in cancer owing to the presence of EGF ligands in the tumours (Fig. 2). Therefore, it is essential to understand the mechanisms that control ligand processing, as novel therapeutic targets might be discovered.

The proteases involved in ectodomain shedding belong to the metalloproteinase family, in particular the ADAM (a disintegrin and metalloproteinase) family and matrix metalloproteinases (MMPs). The production of soluble EGF family ligands through ectodomain shedding occurs in response to diverse stimuli and was first described following activation of G-protein-coupled receptors (GPCRs)35. In cells treated with a receptor agonist, GPCR stimulates a batimastat-sensitive metalloproteinase that induces cleavage and release of HB-EGF, leading to the rapid phosphorylation of EGFR36. This process, termed EGFR transactivation, has important biological implications, as it leads to stimulation of intracellular pathways such as MAPK signalling. The proteases involved in ectodomain shedding have also been examined in tumour cells. ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM17 (Refs 38,39) have been associated with the shedding of distinct EGF-related ligands in cancer cells. In primary breast tumours, there is a correlation between high EGFR activity and high ADAM17 levels44.

It is now widely accepted that diverse GPCR agonists transactivate ERBBs in both normal and cancer cells. Although EGFR and ERBB2 have usually been monitored following GPCR stimulation, it is important to keep in mind that NRGs — the ligands for ERBB3 and/or ERBB4 — are processed by the same metalloproteinases (reviewed in Ref 33). For certain cancer types, such as prostate cancer, the deregulated expression of GPCRs and their ligands has been linked to tumour development (reviewed in Ref 41), and chronic EGFR activation is well described in prostate tumours44, indicating a potential link between the two receptor classes.

More recently, ERBB transactivation has been shown to involve other physiological ligands (Fig. 2). The binding of WNT to its seven-pass membrane receptor Frizzled (FZD) transactivates EGFR44.
REVIEWS

Box 1 | The toxicity of ERBB-directed therapeutics is related to their physiological roles

Mice lacking epidermal growth factor receptor (EGFR) usually die during the first postnatal week owing to respiratory problems. They also show gastrointestinal phenotypes, thin skin, and hair-follicle defects that result in brittle hair. These observations help explain the most common side effects associated with EGFR inhibition in the clinic: rash and acne skin reactions (including folliculitis) and diarrhoea. Indeed, cutaneous skin rash has been proposed as a surrogate marker of clinical benefit for many ERBB-targeted agents. Although infrequent (1% globally), interstitial lung disease (interstitial pneumonia) has also been associated with gefitinib treatment in patients with non-small-cell lung cancer; patients with lung comorbidities, such as idiopathic pulmonary fibrosis, seem to be particularly at risk. This is consistent with the demonstration that gefitinib augments bleomycin-induced pulmonary fibrosis in a murine model, supporting a role for EGFR in the regenerative epithelial-cell proliferation associated with pulmonary fibrosis.

ERBB2 has an essential role in the developing heart. Embryos that lack the receptor die owing to improper formation of the ventricular trabeculae, the myocardium responsible for maintaining blood flow. Conditional ablation of ERBB2 in postnatal cardiac-muscle cell lineages revealed a role for ERBB2 in the adult heart. In its absence, ventricular enlargement of both chambers was observed, which is consistent with dilated cardiomyopathy. In the clinic, some trastuzumab-treated breast cancer patients displayed cardiac phenotypes, including cardiomyopathy, congestive heart failure and decreased left ventricular ejection fraction. This was particularly true for patients treated concurrently with anthracyclines. Considering that ERBB2-null cardiomyocytes showed an increased sensitivity to adriamycin-induced toxicity, it is possible that in the clinical setting trastuzumab-mediated effects on cardiac ERBB2 signalling might aggravate anthracycline-induced toxicity. The heart phenotype observed in Erbb2-knockout mice is identical to that observed in mice lacking ERBB4 (REF 156), demonstrating the importance of the ligand-induced ERBB2–ERBB4 heterodimer in heart development. As both ERBB2 and ERBB4 are expressed in adult cardiomyocytes and NRG1 promotes survival of isolated cardiomyocytes, it is possible that ERBB4 has a role in trastuzumab-induced cardiotoxicity. It should be noted, however, that the antibody does not interfere with the NRG1-induced ERBB2–ERBB4 heterodimerization (see main text).

Box 2 | Background on ERBB-targeted antibodies and kinase inhibitors

The first epidermal growth factor receptor (EGFR)-specific monoclonal antibodies (mAbs) were isolated using partially purified receptor overexpressing cancer cells. Specific antibodies were detected by 125I-EGF-binding inhibition. Cetuximab is a chimeric human:mouse derivative of mAb225, isolated by Mendelsohn and colleagues, and is a potent inhibitor of cancer cells that have autocrine EGFR activation and human tumour xenografts that overexpress the receptor. Cetuximab was approved for treatment of patients with advanced colorectal cancer in 2003. Turning to ERBB2, mAb4D5, isolated by Ullrich and colleagues, and trastuzumab — its humanized (human IgG1 backbone, murine complementary-determining regions variant) — block proliferation of ERBB2-overexpressing breast cancer cells. Trastuzumab was approved for the treatment of ERBB2-overexpressing metastatic breast cancer in 1998. The mechanism underlying trastuzumab's clinical efficacy is still under debate and seems to be multifaceted.

Mutation of the kinase domain of EGFR blocks its biological activity, providing a rationale for developing tyrosine-kinase inhibitors for cancer treatment. Many years of medicinal chemistry, together with progress in protein-kinase crystallization, has resulted in several ERBB-directed TKIs, some of which are already registered for the treatment of cancer patients or are well advanced in clinical development (TABLE 1).
ERBB receptors as targets for cancer therapy

The ERBB receptors are aberrantly activated in a wide range of human tumours, and as such they are excellent candidates for selective anticancer therapies. Several antibodies directed against the extracellular domain of ERBBs and TKIs that target the kinase domain are in clinical use or at advanced developmental stages (Table 1). The treatment of tumour cells with these agents affects many of the intracellular pathways that are essential for cancer development and progression (Fig. 2). In preclinical models, treatment of tumour cells with ERBB-targeted TKIs and antibodies rapidly down-regulates PI3K–AKT, MAPK, SRC and STAT signalling and, as a consequence, blocks the proliferation of tumour cell lines and xenografts in nude mice.5,13,15–17.

Is there any evidence that in the clinical setting anti-ERBB drugs function by decreasing the activity of signalling pathways? Current clinical practice concentrates on the use of surrogate tissue to analyse the molecular consequences of treatment with EGFR inhibitors. In surrogate tissue, downregulation of EGFR phosphorylation is associated with the downregulation of MAPK signalling; the increased expression of the cyclin-dependent kinase (CDK) inhibitor p27 (also known as KIP1); changes in STAT3 activity; and a decreased proliferation index, associated in some cases with increased apoptosis.28–41. Of course, the ideal tissue to use in these pharmacodynamic studies is the tumour42 and a few studies have shown that these pathways are downregulated in tumours from treated patients43,44. In this context, it is important to note that the toxicity reported for ERBB-targeted drugs is correlated with known functions of EGFR and ERBB2 in normal physiology (Box 1).

Response to ERBB-targeted therapeutics

When considering how ERBB-targeted therapeutics function, it is important to mention that, in contrast to the TKIs, antibodies targeting EGFR and ERBB2 have the inherent ability to recruit immune effector cells such as macrophages and monocytes to the tumour through the binding of the antibody constant Fc domain to specific receptors on these cells. In xenograft models at least, this mechanism is relevant for the antitumour activity of ERBB2-targeted trastuzumab.65 Whether this mechanism has a role in clinical efficacy in cancer patients remains unclear.

Most NSCLC patients who showed clinical responses to treatment with gefitinib and erlotinib (both of which are TKIs) had tumours with somatic mutations in the EGFR kinase domain16–20. However, it should be noted that some responding patients had tumours with no kinase-domain mutation. Therefore, although this observation is very exciting, the clinical significance of wild-type EGFR versus mutated EGFR for response to TKIs needs further examination and is discussed in detail in a recent review20. In vitro analyses of tumour cells that express EGFRs with kinase-domain mutations have indicated that these mutations increase the sensitivity of the receptor to activation by ligands.16,18,19,67. Moreover, tumour cells with mutant EGFR preferentially activate the pro-survival PI3K–AKT and

on ectodomain shedding. A detailed discussion of metalloproteinases and ectodomain shedding is beyond the scope of this article. However, it is evident that the process is complex; several proteases can process an individual pro-ligand and a specific protease has several substrates (reviewed in Ref. 48).
To examine the in vivo efficacy of tyrosine-kinase inhibitors targeted at epidermal growth factor receptor (EGFR) in cancer patients, skin biopsies of treated patients have been examined for downregulation of EGFR phosphorylation.

A form of bioregulation in which a secreted peptide affects only the cell from which it is secreted.

During the process of cancer development, cells acquire multiple mutations, each of which contribute to and are necessary for full malignancy (reviewed in REF. 71). Therefore, it is unlikely that targeting only one alteration will be sufficient to kill metastatic tumour cells. For example, for ERBB2-overexpressing metastatic breast cancer, response rates of approximately 35% were observed in the trastuzumab-treated patients. This is likely to be for various reasons, including resistance to the targeted therapy or, more broadly, because the malignant phenotype is unlikely to be due to ERBB2 activation alone. We will discuss the data indicating that other tumour-cell alterations do impact on response to ERBB inhibitors and present rational strategies for combining ERBB-targeted agents with other signal-transduction inhibitors or with cytotoxics.

Acquired resistance to EGFR-targeted TKIs. As discussed above, tumours of lung cancer patients who responded to gefitinib and erlotinib expressed EGFRs that had gain-of-function mutations in the kinase domain18–20. The recent identification of additional mutations in NSCLC patients whose tumours displayed drug-sensitive mutations and who initially responded to TKI treatment might explain some of the acquired resistance to EGFR inhibitors73. Resistance to TKIs has emerged as a significant clinical problem, initially in the context of chronic myelogenous leukaemia (CML), a disease that is associated with the BCR−ABL oncoprotein. CML patients treated with the BCL−ABL-targeted TKI imatinib often experience complete remission. However, imatinib-resistance can arise and has been associated with acquired mutations in the BCR−ABL kinase domain74.

Figure 3 | ERBB-receptor ectodomain structures. A | The extracellular region of each ERBB receptor consists of four domains (I–IV). It has been proposed that in the absence of ligand, ERBB3 and epidermal growth factor receptor (EGFR; not shown) assume a tethered structure27,28 (a). Domains I and III are involved in neuregulin (NRG) binding and, following this, the dimerization arm in domain II is exposed (b) and promotes receptor–receptor interaction (c)23,26. ERBB2 has a fixed conformation that resembles the ligand-activated state of EGFR and ERBB3 (REFS. 30,31). B | The ERBB2-directed antibodies trastuzumab and pertuzumab bind domains IV and II, respectively31,77.
PARACRINE
A form of bioregulation in which a secreted peptide affects a neighbouring cell.

How do ERBB2-overexpressing cancer cells escape from trastuzumab? Only approximately one-third of patients with ERBB2-overexpressing metastatic breast cancer respond to trastuzumab. These clinical results indicate that many ERBB2-overexpressing tumours are resistant to this agent. Several theories, ranging from the existence of compensatory pathways to signalling aberrations downstream of ERBB2, have been proposed to explain the clinical results. Considering the first, ERBB ligands, either PARACRINE or autocrine, might facilitate escape from trastuzumab through the activation of alternative ERBB receptor homo- and heterodimers. In fact, it has been shown experimentally that trastuzumab cannot block the proliferation of tumour cells that have autocrine EGFR activation, and it cannot prevent the ligand-induced formation of ERBB2-containing heterodimers \(^{54}\). This characteristic might partly explain why pertuzumab inhibits the growth of tumours that express low ERBB2 levels, whereas trastuzumab does not.\(^{68}\) The impact that the different characteristics of pertuzumab have on its clinical efficacy remains to be uncovered.

The potential for compensatory pathways to confer resistance to anti-ERBB therapeutics is not restricted to ERBB2 inhibitors, as bypassing the effects of an EGFR-directed TKI through ligand-mediated activation of other ERBBs has also been observed and was circumvented by the use of TKIs that target many different ERBB receptors.\(^{55}\) Clearly, the relevance of these observations to the trastuzumab- or TKI-treated patient will only become apparent when more detailed epidemiology has been carried out, correlating the molecular characteristics of a tumour with clinical response. However, considering that many tumours express multiple ERBB receptors and co-express one or more ERBB ligand, the potential for their involvement in resistance should be kept in mind.

Resistance to ERBB-directed therapeutics through activation of other RTKs. Aberrant activation of other RTKs, for example, insulin like growth factor-1 (IGF-1) receptor, can confer resistance to anti-ERBB therapeutics. Indeed, IGF-1 overexpression correlates with resistance to trastuzumab in breast cancer xenografts.

Table 1 | ERBB-targeted therapeutics in clinical use

<table>
<thead>
<tr>
<th>Compound</th>
<th>Type</th>
<th>Target</th>
<th>Company</th>
<th>Status and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab (Herceptin)</td>
<td>Humanized mAb</td>
<td>ERBB2</td>
<td>Genentech/Roche</td>
<td>Approved for the treatment of ERBB2-overexpressing breast cancer; ongoing trials for use in combination with various other drugs</td>
</tr>
<tr>
<td>Pertuzumab (Omnitarg)</td>
<td>Humanized mAb</td>
<td>ERBB2</td>
<td>Genentech</td>
<td>Phase II trials to treat ovarian cancer, breast cancer, prostate cancer and NSCLC; based on its ability to block ERBB2 dimerization, trials are ongoing in cancer that express low ERBB2 levels</td>
</tr>
<tr>
<td>Cetuximab (Erbitux)</td>
<td>Chimeric mAb</td>
<td>EGFR</td>
<td>ImClone/Merck KgaA, Bristol-Myers Squibb</td>
<td>Approved for the treatment of CRC; ongoing trials in combination with various drugs for treatment of pancreatic cancer, HNSCC and NSCLC</td>
</tr>
<tr>
<td>Matuzumab</td>
<td>Humanized mAb</td>
<td>EGFR</td>
<td>Merck KGaA</td>
<td>Phase II trials for NSCLC, gynaecological cancer, pancreatic cancer and oesophageal cancer</td>
</tr>
<tr>
<td>Panitumumab</td>
<td>Humanized mAb</td>
<td>EGFR</td>
<td>Abgenix</td>
<td>Trials are ongoing for CRC, RCC and NSCLC</td>
</tr>
<tr>
<td>Gefitinib (Iressa)</td>
<td>TKI</td>
<td>EGFR</td>
<td>AstraZeneca</td>
<td>Approved for the treatment of NSCLC after failure on other available treatments; ongoing trials in HNSCC, gastrointestinal cancer and breast cancer</td>
</tr>
<tr>
<td>Erlotinib (Tarceva)</td>
<td>TKI</td>
<td>EGFR</td>
<td>Genentech/OSI Pharmaceuticals</td>
<td>Approved for the treatment of NSCLC after failure on other available treatments; ongoing trials in many cancer types</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>TKI</td>
<td>EGFR/ERBB2</td>
<td>GlaxoSmithKline</td>
<td>Phase III trial underway on breast cancer patients who are refractory to trastuzumab and chemotherapy</td>
</tr>
<tr>
<td>AEE788</td>
<td>TKI</td>
<td>EGFR/ERBB2/VEGFR</td>
<td>Novartis</td>
<td>Phase I trials underway — first multifunction EGFR/ERBB2/VEGFR inhibitor; and there are many potential indications</td>
</tr>
<tr>
<td>Cr-1033</td>
<td>Irreversible TKI</td>
<td>EGFR/ERBB2</td>
<td>Pfizer</td>
<td>Phase II trials underway in breast and NSCLC</td>
</tr>
<tr>
<td>EKB-569</td>
<td>Irreversible TKI</td>
<td>EGFR/ERBB2</td>
<td>Wyeth-Ayerst</td>
<td>Phase II trials underway in NSCLC</td>
</tr>
<tr>
<td>EXEL 7647/EXEL 0999</td>
<td>TKI</td>
<td>EGFR/ERBB2/VEGFR</td>
<td>EXELIXIS</td>
<td>Phase I trials underway</td>
</tr>
</tbody>
</table>

CRC, colorectal cancer; EGFR, epidermal growth factor receptor; HNSCC, head and neck squamous-cell cancer; mAb, monoclonal antibody; NSCLC, non-small-cell lung cancer; RCC, renal-cell cancer; TKI, tyrosine-kinase inhibitor; VEGFR, vascular endothelial growth factor receptor.
Multiple mechanisms have the potential to allow tumour cells to escape from ERBB-targeted therapeutics. Treatment of tumour cells with monoclonal antibodies (mAbs) or tyrosine-kinase inhibitors (TKIs), the two classes of drugs containing heterodimers including the inability of trastuzumab to prevent the formation of ligand–induced ERBB2-containing heterodimers. PTEN dephosphorylates position D3 of phosphatidylinositol-3,4,5 triphosphate, and thereby antagonizes phosphatidylinositol 3-kinase (PI3K)–AKT pathway signalling. PTEN loss of function in tumour cells would proliferate.

Figure 4 | Mechanisms of resistance to anti-ERBB therapeutics. **a** | Resistance of tumour cells to trastuzumab through ligand-induced activation of ERBB2 dimers. Binding of trastuzumab to overexpressed ERBB2 leads to downregulation of receptor signalling potential, resulting in a block in tumour-cell proliferation. Preclinical results have shown that ERBB ligands can circumvent trastuzumab’s ability to block downstream signalling and proliferation of ERBB2-overexpressing tumour cells. There are several likely explanations including the inability of trastuzumab to prevent the formation of ligand–induced ERBB2-containing heterodimers. **b** | Multiple mechanisms have the potential to allow tumour cells to escape from ERBB-targeted therapeutics. Treatment of tumour cells with monoclonal antibodies (mAbs) or tyrosine-kinase inhibitors (TKIs), the two classes of ERBB-targeted therapeutics discussed in the main text, interferes with ERBB-receptor signalling. PTEN dephosphorylates position D3 of phosphatidylinositol-3,4,5 triphosphate, and thereby antagonizes phosphatidylinositol 3-kinase (PI3K)–AKT pathway signalling. Loss of PTEN and resistance to ERBB-targeted therapeutics. The antiproliferative effect of ERBB-targeted therapeutics often correlates with the downregulation of MAPK and PI3K/AKT pathways. It has been suggested that persistent activation of these pathways caused by aberrations downstream of the receptors might also have a role in resistance to trastuzumab, as well as EGFR-directed inhibitors. In fact, activation of AKT or PI3K, or loss or mutation of the dual-specificity protein and lipid phosphatase PTEN, the negative regulator of PI3K, have been found to be important causes of tumour-cell resistance. The main role of PTEN is to dephosphorylate position D3 of phosphatidylinositol-3,4,5 triphosphate, and thereby antagonize PI3K function, leading to downregulation of AKT activity. In a small panel of ERBB2-overexpressing primary breast tumours it was shown that the expression level of PTEN was positively correlated with trastuzumab’s clinical efficacy. In this respect, constitutive PI3K–AKT signalling through loss of PTEN expression, amplification of chromosomal loci encoding AKT or PI3K (reviewed in Ref. 90), or gain-of-function mutations in PIK3CA are common in solid tumours and might have an important role in modulating the efficacy of ERBB-directed therapies. Consequently, logical combination strategies to alleviate this potential resistance mechanism might be required.
A combination of signal-transduction inhibitors will probably have a stronger inhibitory effect.

Rationale for combination of ERBB and mTOR inhibitors. An important mediator of the PI3K–AKT pathway with respect to tumour-cell growth and proliferation is the mTOR kinase. mTOR is a member of the phosphoinositide-kinase-related kinase family, which also includes PI3K. The mTOR pathway acts as a central sensor for nutrient/energy availability, and can also be modulated by PI3K–AKT-dependent mechanisms (FIG. 2). In the presence of mitogenic stimuli and sufficient nutrients and energy, mTOR relays a positive signal to the translational machinery, facilitating events that drive cell growth. The importance of mTOR signalling in tumour biology is now widely accepted.

Consequently, several agents that selectively target mTOR (that is, the rapamycin derivatives RAD001 and CCI-779) are being developed as oncological treatments. Considering that ERBB receptors signal through the PI3K–AKT pathway, it is not surprising that mTOR activity can be influenced by ERBB activation and PI3K inactivation. However, there is accumulating evidence that mTOR also signals independently from these RTKs. This indicates that targeting mTOR in combination with anti-ERBB therapeutics might lead to more profound effects on tumour-cell biology than could be achieved through individual targeting of the proteins (FIG. 5A). As mentioned above, loss of PTEN has been demonstrated to counteract the antitumour action of gefitinib. There is also a clear association between PI3K–AKT activation and ERBB2 overexpression in breast cancer and PTEN loss or activation of the PI3K–AKT pathway has been associated with a poorer response and resistance to trastuzumab. Bearing in mind that loss of PTEN or hyperactivation of AKT has been suggested to sensitize tumours to the effects of mTOR inhibition, clinical investigation into combination treatment with mTOR and ERBB inhibitors is warranted.

Rationale for combining anti-oestrogens or aromatase inhibitors with ERBB inhibitors. Oestrogen-bound ER interacts with oestrogen-responsive elements to stimulate the transcription of target genes involved in cell-cycle progression and survival, a process implicated in the deregulated cell proliferation associated with breast cancer. Although therapies that interfere with ER function, including the SERMs tamoxifen and fulvestrant (a partial ER agonist and a complete ER antagonist, respectively) have significantly contributed to a reduction in breast cancer mortality, at best 50–60% of ER-positive breast cancers respond to anti-oestrogen therapy (reviewed in REF. 104). Consequently, several aromatase inhibitors that reduce oestrogen biosynthesis, such as letrozole and anastrozole, have also been developed as part of a therapeutic strategy aimed at expanding on the clinical success of anti-oestrogens (reviewed in REF. 105).

Recently, it has become evident that oestrogen–ER signalling is far more complex than was initially anticipated, and has pleiotropic effects through non-genomic interactions with growth-factor signalling pathways. Several levels of interaction between the ER and ERBB RTKs have been documented (FIG. 5B). As mentioned above, in vitro E2 treatment transactivates EGFR and ERBB2. Moreover, ER physically interacts with ERBB2 (REF. 107). Strikingly, in many preclinical studies, upregulation of EGFR and ERBB2 expression has been associated with resistance to endocrine therapies (reviewed in REF. 108,109). Indeed, tamoxifen can act as an oestrogen agonist in breast cancer cells that have increased ERBB2 levels and reduction in tamoxifen resistance is associated with ERBB2 downregulation (REF. 110). E2 treatment also activates the PI3K–AKT and MAPK pathways in oestrogen-sensitive breast cancer cells and ER directly interacts with the p85 regulatory subunit of PI3K. Furthermore, the converse occurs: AKT, MAPK and p38 MAPK phosphorylate ER on key residues that are involved in the induction of ligand-independent activation by growth-factor receptors (reviewed in REF. 113). The observation that long-term oestrogen-deprived MCF7 cells (with increased sensitivity to oestrogen) show upregulation of ERBB2 (REF. 114) indicates that ERBB-receptor signalling is also fundamental to the adaptation of cultured breast cancer cells to low oestrogen levels, a situation that could be said to mimic therapy with aromatase inhibitors.

Based on the extensive crosstalk between the oestrogen–ER and ERBB signalling pathways, drug-combination approaches targeting both pathways would seem to be a rational clinical strategy to improve the efficacy of endocrine therapies, as well as to potentially circumvent or delay the development of resistance. Indeed, studies showed that primary breast tumours derived from ER-positive patients exhibiting ERBB2-overexpression had an impeded antiproliferative response to endocrine therapy, and tamoxifen treatment resulted in increased ERBB2 activation in tumours at relapse. Moreover, although the use of a single prognostic factor should be viewed with caution in the heterogeneous setting of cancer, in both the advanced and adjuvant setting, ER-positive patients with ERBB2-overexpressing breast tumours do seem to have a poorer clinical outcome to endocrine therapy (reviewed in REF. 108). Interestingly, in a neoadjuvant study, advanced-disease patients with EGFR- or ERBB2-positive breast tumours responded well to the aromatase inhibitor letrozole but poorly to the SERM tamoxifen. This observation indicates that oestrogen deprivation might be a more effective neoadjuvant therapy than SERMs in this patient population, and is presumably related to the different mode of action of aromatase inhibitors as opposed to SERMs. However, whether oestrogen deprivation would be the preferred strategy in this patient population awaits further clarification.

Preclinical efforts to examine combinations of tamoxifen with the EGFR inhibitor gefitinib in vitro and in experimental tumour models have demonstrated the potential for improved antitumour effects even in the...
Background of tamoxifen resistance\(^{45,109}\). However, a study showing antagonism when using trastuzumab in combination with tamoxifen in the ERBB2-overexpressing BT474 breast cell line\(^{120}\) indicates that more experiments will be needed to determine the feasibility of this combination approach. But it should be noted that promising preliminary data, which indicate an increased objective response to the combination, are emerging from a Phase II clinical trial of trastuzumab combined with letrozole in patients with ER- and ERBB2-positive advanced breast cancer. Moreover, Phase III clinical trials have been initiated with trastuzumab or lapatinib (Table 1) in combination with anastrozole, as well as a randomized Phase II study evaluating gefitinib with either fulvestrant or anastrozole (reviewed in Ref. 108). Clearly, the results of these clinical studies, together with more in-depth preclinical analyses, will help to define the future of this promising combination strategy.

Chemotherapy and ERBB inhibitors. In preclinical experiments it was shown that the antitumour effect of EGFR-targeted monoclonal antibodies was strengthened when combined with the DNA-crosslinking drug cisplatin\(^{121}\). The activity of ERBB2-targeted trastuzumab was also enhanced when combined with cisplatin\(^{122}\) or docetaxel\(^{123}\); the latter was registered with trastuzumab for cancer treatment. Mechanistic studies revealed that in the presence of the ERBB2-targeted antibody, cancer cells treated with platinating agents showed a reduction in unscheduled DNA synthesis, a sign of DNA repair\(^{122,124}\). Therefore, downregulation of ERBB2 interferes with the ability of tumour cells to repair DNA adducts, thereby causing tumour-cell death. More recently, larger studies revealed synergistic interactions between trastuzumab and carboplatin, 4-hydroxycyclophosphamide, docetaxel or vinorelbine in a panel of ERBB2-overexpressing breast cancer cells\(^{124}\). At present, the combination of trastuzumab, docetaxel and platinum salts is being analysed in clinical trials\(^{125}\). Preclinical studies with EGFR-directed TKIs in combination with chemotherapeutics looked promising\(^{126}\). Regrettably, Phase III trials evaluating the addition of the TKIs gefitinib or erlotinib to chemotherapy as first-line therapy in patients with metastatic NSCLC failed to show an advantage in response rate, progression-free survival
or overall survival compared with standard treatment15,127. Elucidating why this combination approach was unsuccessful might provide valuable information pertinent to the design of drug-combination trials in the future.

Perspectives and future directions

Our increased understanding of the molecular, structural and biological characteristics of the ERBB RTK family has been essential for the rational development of ERBB-targeted inhibitors. As we discuss here, ectodomain-targeted antibodies and TKIs are in clinical use and show efficacy. Nevertheless, one of the key goals for future work will be the development of accurate predictors of response to ERBB-targeted therapies. Considering, for example, that only about one-third of the pre-selected group of ERBB2-overexpressing breast cancer patients respond to trastuzumab128, it becomes obvious that other factors must be considered before choosing a patient for this treatment. These predictors should help in the design of better clinical trials for drug testing, thereby allowing the more rapid approval of novel therapeutics.

The recent discovery of kinase-domain mutations in EGFR and ERBB2 and their impact on response to ERBB-targeted therapeutics awaits further clinical and basic research. It will be important to understand how the mutated receptors contribute to tumour biology. Moreover, the intriguing results indicating that mutant EGFR couples to pro-survival pathways more efficiently than the wild-type receptor needs to be confirmed in patients. Finally, it will be essential to determine if kinase-domain mutations will be a useful tool for patient selection. In particular, are mutations in the ERBB2 kinase domain predictive for clinical response? Considering the proven molecular role of the ERBB2–ERBB3 heterodimer in breast tumour cell lines that overexpress ERBB2 (REF. 128), it will be interesting to see if activating ERBB3 mutations are uncovered in tumours that have low ERBB2 levels. The role of ERBB4 in cancer biology needs more study, one important reason being to determine how blockade of ERBB4 by multitargeted ERBB-kinase inhibitors impacts on clinical response. In this context, it will be essential to determine whether targeting multiple ERBB receptors will lead to unacceptable toxicity. Lastly, although there is evidence supporting the use of skin as a surrogate tissue to evaluate molecular responses to ERBB inhibitors43, the development of biomarker analyses to directly assess tumour response should be given high priority. This will become especially important when attempting to evaluate the effects of drug-combination strategies and for establishing effective criteria for patient selection.

Turning to combination strategies, the importance of IGF1R in maintaining strong activation of the PI3K–AKT pathway, and its potential to interfere with ERBB-targeted inhibitors, indicates that it is logical to consider combining anti-ERBB agents with an IGF1R inhibitor129. More generally, the PI3K–AKT pathway can be activated by many different mechanisms and these could also be targeted together with ERBB RTKs. As discussed above, mTOR inhibitors are very appealing. However, there are inhibitors targeting other kinases on the PI3K–AKT pathway (reviewed in REFS 130,131) that might also be effective in combination. Furthermore, targeting the MAPK pathway (reviewed in REF. 132), specifically the RAF kinase (reviewed in REF. 133), would also seem to be appropriate.

Initially, the development of a TKI with a very specific target was an important goal in the field. Considering our increased understanding of how the tumour microenvironment impacts on the progression of an initially well-encapsulated tumour into metastatic cancer, the concept of targeting several key kinases important in this progress has emerged. Based on the importance of tumour vasculature in the process of cancer growth and spread, inhibitors that block endothelial–cell survival have gained in importance. Preclinical studies have demonstrated encouraging combination effects with ERBB- and vascular endothelial growth factor receptor (VEGFR)-directed inhibitors in experimental animal tumour models134,135. It will be very interesting to see how multitargeted inhibitors such as AE7788 and EXEL7647 (TABLE 1) that block both ERBB and VEGFRs fare in the clinic in comparison to other ERBB inhibitors. In several preclinical models, AE7788 was as effective as the combination of the ERBB inhibitor PK1166 and the VEGF inhibitor PTK787/ZK22584 (REF. 136). Clearly, agents that have dual activity in one molecule present a ‘combination strategy in one’, which could provide more flexibility in terms of the range of potential tumour indications and facilitate advanced combination strategies.

In the future, we are confident that by continuing the exchange of information between basic and clinical studies we will uncover further factors that underlie clinical response to ERBB-targeted therapeutics. We also hope that the continued translation of knowledge that is emerging from the field of signal transduction will contribute not only to the development of novel therapeutics, but also allow us to optimally use those already in the clinic.

9. Grandis, J. R.

13. Ohgaki, H.

25. References 25 and 26 are the first to show the crystal structure of the EGFR ectodomain in complex with a ligand. Although the two complexes simultaneously contact two binding sites in the ectodomain, the ligand does not span the ectodomain dimer; EGFR dimerization is entirely receptor mediated. In the latter publication, this unique mechanism of EGFR-mediated dimerization was verified by mutagenesis.

This paper describes the identification of acquired mutations of the PIK3CA gene in hormone-refractory prostate cancer patients who have become resistant to gefitinib or erlotinib.

Adhane, J. et al. BFK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancer. Oncogene 21, 6653–6661 (2002).

This paper presents an extensive in vitro and vivo analysis of the activity of the multifunctional inhibitor AEE788, which targets both ErbB2 and VEGFRs. A novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth in vivo. Cancer Res. 65, 2178–2189 (2005).

This paper describes the identification of acquired mutations of the PIK3CA gene in hormone-refractory prostate cancer patients who have become resistant to gefitinib or erlotinib.

This paper presents an extensive in vitro and vivo analysis of the activity of the multifunctional inhibitor AEE788, which targets both ErbB2 and VEGFRs. A direct comparison with the 5691-specific TKDs used in combination is performed.